1. Друзья, "лихорадка" вокруг тем об альтернативной энергии заставила возбудиться и мошенников! Будьте бдительны и не ведитесь на дешевые разводы. Помните, что если Вам предлагают купить рабочий БТГ по цене дешевле миллиона долларов, то на 99% это развод Вас на деньги. Если же Вам предлагают купить БТГ дороже миллиона долларов, то это развод на 100%. Увы чудес и исключений пока нет, хотя Вы всегда можете это проверить самостоятельно... :-)
    Скрыть объявление

Гироскоп монтированый в колесо - это быстрый двигатель в космосе

Тема в разделе "Эфир и эфиродинамика", создана пользователем RDLNEO, 25 Январь 2020.

  1. RDLNEO

    RDLNEO Пацак

    В предыдущих постах аналогичной темы был описан принцип отталкивания в космосе с помощью гусеничного конвейера с гироскопами (аналог гребца сидящего в байдарке), причем, если просто высунуть весло в воду, то это уже тормоз - т.е. если гироскоп работает (вращается по всем осям) на космическом корабле, то скорость корабля постепенно падает.

    В этой теме мы поговорим об усовершенствованном и самом быстром на сегоднящний день двигателе на основе гироскопа.
    Дело в том, что если заставить гусеничный конвейер быстро вращаться для ускорения корабля, то может произойти разрыв звеньев гусениц (причина: слишком большое инерционное воздействие в местах поворота гусениц).
    Для решения этой проблемы был предложен вариант установки гироскопа в быстро вращающемся колесе (см.рис.№_1).

    А теперь начинается подробное описание всех компонентов рисунка 1:
    Композитный металлический диск закреплен на корпусе корабля через подшипниковые крепления "C".
    Что значит "композитный"? - Это значит, что диск не простой и содержит пустоты внутри себя для размещения 2-х монорельсов, расположенных параллельно друг другу - один монорельс для гироскопа, другой монорельс - для противовеса и всё это необходимо для обеспечения стабильности вращения колеса.

    Гироскоп закреплен на монорельсе "B1-B2" изображённым синим цветом.

    Подробности крепления гироскопа: закреплен по принципу "обнять монорельс с двух сторон подшипниковыми колёсиками".
    Диапазон перемещения гироскопа на монорельсе от точки B1 до точки B2. В граничных точках остановки гироскопа монтированы пневмо-рессоры для мягкой остановки гироскопа летящего с большой скоростью к точкам B1, B2 (пневмо-рессоров нет на рисунке).
    Для работы гироскопа необходимо электрическое питание, которое подаётся к нему в виде шлейфа струйного/матричного принтера, которое, в свою очередь, снимается со скользящих контактов оси диска (на рисунке этого нет - пока это только теория).
    Также гироскоп снабжён отталкивающим цилиндрическим подшипником (2 шт.), установленным на его торцевых сторонах.

    Примечание: гироскоп с противовесом с отталкивающимися подшипниками на рисунках отсутствуют по причине усложнения просмотра.

    Противовес закреплён на монорельсе "A1-A2" изображённым красным цветом. Подробности крепления противовеса точно такие же, как у гироскопа за исключением факта отсутствия у противовеса шлейва питания.

    Принцип действия работы конструкции (сейчас анализируется рисунок 2):
    Композитный диск вращается с максимально возможной скоростью в направлении зелёной стрелки. Гироскоп описывает движение в направлении точек от "B" до "A" по траектории отталкивания "X" изображённой в виде красной линии, после чего гироскоп отталкивается от рессоров в точке "A" (также см.рис. №_3) с помощью торцевого подшипника и отпрыгивает по монорельсу в точку "B" и так далее.

    Примечание: надо признать тот факт, что в момент отталкивания от рессоров в точке "A" (см.рис. №_2) с помощью торцевого подшипника, космический корабль получит тормозящий (реверсный) импульс, который составит не более 15% от общего отталкивающего (прямого) импульса участка "B"-"A" по траектории "X".

    вопрос: - почему так мало, т.е. всего 15% от отталкивающего импульса?
    ответ: - удар гироскопа гасят рессоры (см. рис. №_3), которые отталкивают гироскоп до точки его "мягкого приёма" "B". И потом, летя по монорельсу до точки "B", гироскоп не оказывает никаких отталкивающих/тормозящих воздействий на корабль по причине отсутствия на данный момент каких-либо механических соединений с космическим кораблём. Поэтому принято считать, что весь "опасный" удар принимают на себя рессоры рисунка 2 в точке "A".
    вопрос: - почему этот удар называется "опасный"?
    ответ: - потому что рессоры рисунка 2 в точке "A" связаны с космическим кораблём и влияют на его отрицательную скорость;
    вопрос: - как свести это влияние к минимуму?
    ответ: - увеличить массу рессоров рисунка 2 в точке "A", а также удлинить сами рессоры в виде удлинения их пружин, и возможно мы сможем понизить это отрицательное воздействие с 15% до 5%.
    Пример: теннисный мяч летит в книгу стоящую вертикально на земле - книга падает на землю от удара, а теперь тот же самый теннисный мяч с такой-же скоростью летит в могильную плиту стоящую на земле - результат будет совсем другим, потому что масса гасит собой ударный импульс.
    На основании вышеизложенного примера, массы гироскопа, рессоров и противовеса подлежат вычислению с помощью специальных программ, основанных на эмуляции физики импульсных и спокойных тел обладающих массой.

    Анализируя рабочую область гироскопа можно сказать, что она постоянна и представляет собой зону изображённую жёлтым цветом, в результате чего космический корабль будет перемещаться в направлении от "A" до "B".

    Что касается противовеса, то всё тоже самое, только движется в реверсном гироскопу направлении и отталкивается от рессоров "B" рисунка 2.

    Примечание: масса противовеса может отличаться от массы гироскопа по причине их разных состояний для обеспечения равномерного вращения композитного диска.

    [​IMG]
     

Поделиться этой страницей