1. Друзья, "лихорадка" вокруг тем об альтернативной энергии заставила возбудиться и мошенников! Будьте бдительны и не ведитесь на дешевые разводы. Помните, что если Вам предлагают купить рабочий БТГ по цене дешевле миллиона долларов, то на 99% это развод Вас на деньги. Если же Вам предлагают купить БТГ дороже миллиона долларов, то это развод на 100%. Увы чудес и исключений пока нет, хотя Вы всегда можете это проверить самостоятельно... :-)
    Скрыть объявление

Новости LENR.

Тема в разделе "Ядерная энергия, синтез и трансмутация", создана пользователем товарищ мышъ, 23 Апрель 2016.

  1. Mouselab

    Mouselab Чатланин

  2. Mouselab

    Mouselab Чатланин

    Brillouin Energy Hydrogen Hot Tube (HHT) Technology Achieves Performance Breakthroughs

    News Provided By

    Brillouin Energy

    August 08, 2022, 11:00 GMT

    Share This Article

    Brillouin Energy Corp. announced performance breakthroughs for its first transportable HYDROGEN HOT TUBE™ (HHT™) Test System

    These significant performance achievements represent a major step forward on the pathway to commercializing our innovative LENR technologies for hot water boiler and hydronic heating manufacturers,”
    — David Firshein\\

    BERKELEY, CALIFORNIA, USA, August 8, 2022 /EINPresswire.com/ -- Company proves net-positive power from its HHT boiler at ICCF24 Solid-State Energy Summit.

    Brillouin Energy Corp. announced performance breakthroughs – net-positive power out-of-the-wall, steady-state operation and heating water – for its first transportable HYDROGEN HOT TUBE™ (HHT™) Test System demonstrated at the ICCF24 Solid-State Energy Summit.

    The company’s first transportable HHT test system demonstrated production of over 250 Watts of heat in water at a 1.25X excess heat ratio from power out-of-the-wall, steady-state, while running a small Stirling Engine. The implicit excess heat ratio was over 3X at the internal catalyst rod level. A short video of the demonstration can be seen here: Brillouin’s ICCF24 demonstration.

    “These significant performance achievements represent a major step forward on the pathway to commercializing our innovative LENR technologies for hot water boiler and hydronic heating manufacturers,” said David Firshein, Chief Financial Officer, Brillouin Energy Corp. “Results for the transportable HHT test system are comparable to the performance levels of the other five HHT test systems operating in our company’s Berkeley Lab on an extended basis.”

    With nearly $5 billion invested in hot fusion over the last twelve months, enthusiasm for solid-state fusion energy technologies is gaining traction. A new generation of scientists, engineers, investors and corporate executives are investigating, developing and investing in new solid-state fusion energy devices. Brillouin Energy is a frontrunner in the field, with its proven HHT systems.

    In July, the HHT test systems consistently demonstrated the Key Performance Trifecta of net-positive power out-of-the-wall, steady-state operation, as measured by heating water. This combination serves as commercial proof of concept. The company’s “water flow calorimetry” achievement is the simplest, yet most definitive test measure of proving the LENR excess heat reaction in operation. The HHT’s performance will continue to improve with further investment in its engineering and manufacturing processes.

    Brillouin Energy’s HHT is optimally designed for successful commercialization. The company’s patented Q-Pulse technology is used to control the HHT thermal output, which is important for scaling multiple commercial product applications. As such, the company intends to join the US Department of Energy’s ARPA-E Teaming Partner List for LENR.

    “We are partnering and working with reputable experts at prestigious US academic institutions, laboratories, and corporations to further prove the generation of ultra-cold, ultra-slow neutrons, which are completely non-hazardous. Partnering will help us further accelerate our commercialization timeline. Solid-state fusion energy is abundant, low-cost, clean, safe, and flexible in scale to meet demand,” said Robert Godes, Brillouin Energy’s Founder and Chief Technology Officer.

    About Brillouin Energy Corp.

    Brillouin Energy is a clean-technology company based in Berkeley, California, USA. The company is developing its unique, patented HHT technology in collaboration with former senior scientists from SRI International. This Zero pollution, low-cost, renewable energy technology is capable of producing thermal energy for multiple commercial product applications.

    For further information about Brillouin Energy, its current Series C Round capital raise for accredited investors, commercial licensing opportunities, or this news release, contact David Firshein, Chief Financial Officer at +1-415-419-6429 or dnf@brillouinenergy.com.

    Meta Tags: Hydrogen Hot Tube, HHT, HHT Reactor, USDOE, DOE, ARPA-E, Fusion, Solid-State, Low Energy Nuclear Reaction, LENR, Controlled Electron Capture Reaction, CECR, Cold Fusion, Energy, Renewable Energy, CleanTech, ClimateTech, Brillouin Inside, Powered by Brillouin Inside, Energy Security, Climate Change.
    David Firshein
    Brillouin Energy
    +1 415-419-6429
    email us here
    Visit us on social media:

    источник https://www.einnews.com/pr_news/584...technology-achieves-performance-breakthroughs
  3. Mouselab

    Mouselab Чатланин

    How Hot is Cold Fusion?

    August 12, 2022 By Valerie Gardner 24 Comments


    Matt Trevithick of DCVC moderates a panel with Dr. David Nagel, Prof. Robert Duncan and Dr. Thomas Schenkel

    The 24th International Conference on Cold Fusion (ICCF24) was held at the lovely and spacious Computer History Museum in Mountain View, CA over four days in late July. As a venture investor looking at evaluating and investing in a wide range of advanced nuclear ventures, I was invited to participate and/or sponsor the event. While I wasn’t initially convinced that cold fusion was the best use of four days, the appeal of sharing my perspective on investing in next-gen nuclear as well as having the opportunity to talk wtih attendees about the work Rod and I are doing building advanced nuclear portfolios for investors with Nucleation Capital, our non-traditional venture fund, was more than I could resist.

    To our delight, ICCF24 was a surprisingly fun, well-organized and interesting event, hosted by the Anthropocene Institute. Four full days of expert sessions were capped with a hosted outdoor banquet with comic food-prep performance, gifts and dinner prepared by television celebrity Chef Martin Yan; the inspiring award of a lifetime-achievement gold medal; musical and multimedia entertainment with original rap performances about cold fusion derived from conference sessions by science impresario Baba Brinkman and much more. For those curious about where things stand with what is no longer being called “cold fusion,” I am pleased to share the following report.

    First, some background

    The concept of cold fusion was announced 1/3 century ago by Martin Fleischmann and Stanley Pons.1 Their sensational revelation? The release of excess heat in a lab setting explainable only as a type of nuclear event occurring in the presence of certain metals and gases. Their claims engendered tremendous scientific interest and initial fanfare but lack of replicability or an acceptable theory to explain the effect undermined confidence and the concept quickly went from hotly debated to thoroughly debunked.

    The onerous stigma of discredited science has since followed work on cold fusion yet a number of scientists had become intrigued and begun to explore the phenomenon. Researchers began to meet up periodically to discuss their work and results, forming the ICCF (International Conference on Cold Fusion) in 1990. Despite a serious lack of funding, many independent researchers and labs persisted in testing materials and produced yet more suggestive data using different combinations of metals, configurations, temperatures and pressure conditions.

    Fast forward

    In 2015, with the threat of climate change helping to convince Google to leave no energy stone unturned, a group of scientists, academics and technologists secured Google funding for a multi-year investigation into cold fusion. After three years and an investigation that tested dozens of approaches, the team published their findings in the journal Nature, acknowledging their failure to observe any transformative excess heat yet also an inability to either confirm or disprove cold fusion from their efforts. They found that better test techniques and measurement calorimetry would be helpful to go further and encouraged others to keep exploring. They concluded:

    “A reasonable criticism of our effort may be ‘Why pursue cold fusion when it has not been proven to exist?’. One response is that evaluating cold fusion led our programme to study materials and phenomena that we otherwise might not have considered. We set out looking for cold fusion, and instead benefited contemporary research topics in unexpected ways.

    A more direct response to this question, and the underlying motivation of our effort, is that our society is in urgent need of a clean energy breakthrough. Finding breakthroughs requires risk taking, and we contend that revisiting cold fusion is a risk worth taking.

    We hope our journey will inspire others to produce and contribute data in this intriguing parameter space. This is not an all-or-nothing endeavour. Even if we do not find a transformative energy source, this exploration of matter far from equilibrium is likely to have a substantial impact on future energy technologies. It is our perspective that the search for a reference experiment for cold fusion remains a worthy pursuit because the quest to understand and control unusual states of matter is both interesting and important.“

    (Click this image to go to a free copy of this report of the Google-funded study.)

    Back to the present

    The ICCF held its 24th session in northern California last week, following a three year hiatus. Those representing current ongoing research projects largely sported grey, white or no hair. The community engaged in lively debates on a whole range of issues, including what to call this type of energy. With “cold fusion” being tainted, “LENR” (Low Energy Nuclear Reactions) and “Solid-State Fusion Energy” were broadly used interchangeably, even as certain organizers urged caution about selecting any name before the underlying physics were actually fully understood.

    Continued poor repeatability underpinned by the lack of a supportive predictive atomic theory that explained the heat generation effect was acknowledged. Nevertheless, there was definite progress being made in a range of areas, not least of which was a far broader appreciation of the complexity of the dynamics underlying the atomic transmutations, particularly with respect to the numbers of affected and active bodies. Unlike fusion and fission, which are nuclear events that happen as a result of direct interactions of two distinct bodies (such as between deuterium and tritium for fusion, and between uranium and a neutron in fission), research had shown that LENR involved complex mult-body interactions, which could occur with a variety of metals such as nickel, steel, or palladium in the presence of deuterium or tritium but which may also include quarks, photons, protons, neutrons or pomerons. To further complicate the matter, it is clear that those dynamics were impacted by conditions such as temperature and pressure affecting the energy of the bonds within the metallic lattices.

    While the exact set of phenomena that unfold to release energy remains unclear, what was not debated at all was whether the potential to release heat was real. It clearly is, despite the extended difficulty scientists have had pinning down theory and practice. This issue seems entirely settled. Decades of work by hundreds of researchers reporting on their experiments and experiences of heat release “anomalies” have begun to provide a far more nuanced picture of the dynamics and the parametric guideposts that will eventually enable those studying them to narrow in on the controlling aspects.

    According to Dr. Florian Metzler of MIT, the revelation of data points around these phenomena closely mirrors the progression of reporting around anomalies for other deeply complex physical effects, such as the work that preceded the development of the transistor, the solid state amplifier or that which is continuing on superconductors. At some point, the data generated will provide sufficient guidance to enable patterns to emerge that may result in a profound shift in our understandings as well as tranformative technologies, just as Bell Labs did, despite widespread skepticism, to finally figure out how to make reliable transistors, which innovation revolutionized electronics.

    In the meantime, there are researchers pursuing the bigger picture on the theoretical side, and making strides towards creating a true “proof of principle” design, starting with known mechanisms which include a better understanding of how host lattice metals absorb energy, get excited and emit an alpha particle. Increasingly, those seeking to deploy LENR systems will move from uncontrolled behaviors to deliberately engineered systems that produce useful amounts of energy. Once that happens, LENR may well emerge as a readily deployable type of consumer-facing nuclear, where a wide range of low-cost materials could be combined at nearly any size or configuration to generate electrons or heat for use in homes, schools, stores, boats, planes and other places where both electricity and heat are used but in smaller amounts.

    Two Big Announcements

    $10 Million from ARPA-e. Though there were no technological breakthroughs announced, there were some very exciting funding announcements. During his presentation, ARPA-e fusion program director, Scott Hsu, announced a new $10 million funding solicitation round that will select a number of LENR project teams to fund. This funding decision came out of ARPA-e’s Low-Energy Nuclear Reactions Workshop, held in October of 2021, which solicited input from experts on the best approach for breaking the stalemate that has long existed between lack of funding and lack of results in cold fusion. In anticipation, most likely, of the urgency with which any breakthrough will need to be commercialized, this program requires that applicants form into full business teams that bring a variety and balance of skills, blending technical with marketing and finance.

    Eyeing a $100M XPrize. Although organizers were not ready to announce the competition or the specific requirements, work has begun to raise the capital necessary to offer a $100 million XPrize to the first team to produce a replicable, accepted, on-demand LENR system. Peter Diamandis, founder of the XPrize, addressed the assembled group and revealed info about the behind-the-scenes efforts, decisions and negotiations that must be completed in order for the XPrize organization to officially offer the prize and start the competition. The news and prospect of there being a very large XPrize that might be offered was very well received. It was also clear that, much like with other XPrizes, news of a prize being in the works can shake loose investment capital for promising ventures sooner rather than later.


    LENR Lessons and Learning

    According to the Anthropocene Institute, there may be 150 or more initiatives or ventures currently working on LENR research or development. ICCF24 organizers opted not to host a huge expo but instead invited the community to submit posters or abstracts for the conference. One had to become a sponsor in order to secure space to showcase one’s efforts at the event. As a result, only a few LENR ventures displayed LENR demos and, of those on display, only one actually demonstrated an effect. Nevertheless, there were a few ventures in attendance claiming to have working systems that generate excess energy and endeavoring to raise venture funding to get to the next stage.

    For those of us interested in the investment opportunities, ICCF24 provided ample opportunities for mingling with and meeting those gathered at ICCF24. People were happy to share their opinions on the state-of-the-art and these conversations provided a gauge on community sentiments. Not surprisingly, many were wary of existing energy production claims. Such caution is prudent for anyone prone to giving credence to any claim until repeatable energy production is demonstrated without question. This has yet to be achieved. But, to complicate matters, lack of demonstrable evidence doesn’t fully refute claims either. There are, in fact, few good means of measuring small amounts of incremental heat produced in a system that is already hot or has another source of energy adding power. There are tabulation methods that have been proposed but lack of suitable measurement equipment or agreed upon verification methods is yet another challenge for the successful emergence of this technology. Thus, the race to the finish line for understanding and controlling these reactions continues both on the theoretical side as well as on the practical application side with no clear winner or timeline in sight, making early-stage investment decisions little more than a bet on a team and a dream.

    Whichever group manages to overcome these obstacles and develop a securely working system—whether or not they have figured out the underlying theoretic basis—would, however, have a significant strategic and financial advantage. Not only would they find capital resources, they would have a clear lead in getting a viable product to market in what would clearly be a huge market. Sadly, given cold fusion’s still lingering stigma, LENR developers face extra jeopardy in any overstatements that could reverberate to set back the entire field. For now, this makes fundraising a particular challenge for all developers, even among those investors quite aware that LENR may one day compete in the vast energy market.

    Given the potential value of this technology, it is no wonder that dozens of cash-strapped researchers and venture teams have soldiered on for decades. Now that ARPA-e has chosen to continue the work initiated by Google to identify a proof-of-concept design, there is new-found scientific integrity and rebranding to be done. There is also a greater awareness that what set cold fusion back and derailed early efforts was not scientific fraud but rather its far more complex sub-atomic transmutations, its multibody interactions combined with environmental factors such as temperature, pressure and light that varied by selection of component materials. These complexities still need to be sorted out but could potentially provide many viable options for sourcing and construction of systems and thus help to reduce manufacturing costs.

    Not surprising then, was the participation at ICCF24 of several of the most respected and active venture funders in the nuclear space, including Matt Trevithick, who recently left Google and joined the venture fund, DCVC; Carly Anderson from Prime Movers Lab; Kota Fuchigami from Mitsubishi; and Shally Shanker of Aiim Partners. How and where these firms choose to invest in LENR will not be known for some time. Still, if nothing else, this conference established that informed investors do recognize that LENR exists and they are watching its progress. If the work progresses as anticipated by the community, LENR will eventually become a ubiquitous source of safe, low-cost, readily-manufacturable, clean, popular and broadly applicable commercial nuclear energy that provides abundant energy. For those still pondering “how hot is cold fusion?,” there is discernable warming, so it may be time to start paying attention.

    Valerie Gardner, Nucleation Capital managing partner, and Grant Mills, Nucleation’s summer associate, tabling at ICCF24

    [NOTE: Nucleation Capital is the only venture fund focused on investing in the advanced nuclear ventures which enables both large institutional funders and accredited individual angel investors to participate at the level that works for them. For ICCF24, Nucleation trialed a special promotional rate that remains available to Atomic Insights readers through August. If you’d like to learn more about why investing in venture capital can improve your overall portfolio performance, click here.]


    1. “Bridging the Gaps: An Athhology on Nuclear Cold Fusion,” compiled and edited by Randolph R. Davis, published by WestBow Press, 2021.

    источник: https://atomicinsights.com/how-hot-is-cold-fusion/
  4. Mouselab

    Mouselab Чатланин

    С 3 по 7 октября 2022 года через приложение ZOOM состоится 27-я Российская Конференция по Холодной Трансмутации Ядер и Шаровой Молнии (РКХТЯ и ШМ-27).


    Уважаемые коллеги! С 3 по 7 октября 2022 года через приложение ZOOM состоится 27-я Российская Конференция по Холодной Трансмутации Ядер и Шаровой Молнии (РКХТЯ и ШМ-27).

    Тематика конференции:
    Экспериментальное исследование в области Холодной Трансмутации Ядер (ХТЯ) химических элементов и Шаровой Молнии (ШМ).
    Теоретические модели ХТЯ и ШМ.
    Перспективы практических применений ХТЯ и ШМ.
    Теоретические, экспериментальные и прикладные исследования взаимодействия электромагнитного поля и вещества.

    Конференция будет проходить в интернете через приложение ZOOM без личного присутствия и без организационного взноса.

    Заявку на выступление с указанием ФИО, степени, организации, e-mail, тезисы доклада ( не более 1 стр. на русском или английском языке) присылать до 15 сентября 2022.
    Заявку участника с указанием ФИО, степени, организации, e-mail присылать до 25 сентября 2022.
    Участники получат до 26 сентября 2022 письмо с программой конференции и тезисами докладов. В дни конференции все участники будут получать в 11 часов по московскому времени письмо со ссылкой для подключения к заседанию конференции на текущий день. Выступления с докладами будут проходить в две сессии: утренняя – с 12 до 14 часов, вечерняя – с 16 до 18 часов. Ежедневно с 18 до 19 часов – круглый стол.

    Доклады, обсужденные на конференции, будут опубликованы. Сроки предоставления полного текста доклада для публикации будут сообщены после завершения конференции.

    Адреса для подачи Заявки участника или Заявки на выступление alexparh@mail.ru klimov.anatoly@gmail.com zvn07@yandex.ru bychvl@gmail.com

    Председатель оргкомитета РКХТЯ и ШМ-27 А.И.Климов
    Со- председатель оргкомитета В.Л. Бычков,
    Со- председатель оргкомитета В.Н. Зателепин,
    Со- председатель оргкомитета А.Г. Пархомов.

    The second information letter (CTN&BL-27)


    Dear colleagues! From October 3-7, 2022, the 27th Russian Conference on Cold Transmutation of Nuclei (СTN) and Ball Lightning (BL) will be held via the ZOOM application.

    Conference topics:
    1. Experimental research in the field of Cold Transmutation of Nuclei of chemical elements and Ball Lightning.
    2. Theoretical models of CTN and BL.
    3. Prospects of practical applications of CTN and BL.
    4. Theoretical, experimental and applied studies of the interaction of the electromagnetic field and matter.

    The conference will be held online via the ZOOM app without personal presence and without an organizational fee.

    The application for a paper presentation with the indication of the full name, degree, organization, e-mail, abstracts of the report (no more than 1 page in Russian or English) should be sent by September 15, 2022.
    The participant’s application with full name, degree, organization, e-mail should be sent by September 25, 2022.
    Participants will receive a letter with the conference program and abstracts by September 26, 2022. During the conference, all participants will receive a letter at 11 o’clock Moscow time with a link to connect to the conference meeting for the current day. Presentations will be held in two sessions: morning – from 12 to 14 o’clock, evening – from 16 to 18 o’clock. Every day from 18 to 19 hours – a round table.

    The reports discussed at the conference will be published. The deadlines for submitting the full text of the report for publication will be announced after the end of the conference.

    Addresses for submitting a participant’s Application or an Application for a paper presentation: alexparh@mail.ru klimov.anatoly@gmail.com zvn07@yandex.ru bychvl@gmail.com

    Chairman of the organizing committee of the СTN&BL–27 A.I. Klimov
    Co-Chairman of the Organizing Committee V.L. Bychkov,
    Co-Chairman of the Organizing Committee V.N. Zatelepin,
    Co-chairman of the organizing committee A.G. Parkhomov

    источник: http://lenr.seplm.ru/konferentsii/s...tsii-yader-i-sharovoi-molnii-rkkhtya-i-shm-27
  5. Mouselab

    Mouselab Чатланин

    Leonardo Corp. теперь принимает предварительные заказы на Ecat ‘Minisklep’
    31 августа 2022 г.
    Новый продукт доступен для предварительного заказа на Ecatorders.com веб-сайт. Речь идет о Ecat Minisklep, который выглядит как уменьшенная версия Ecat SKLEP.

    Опубликованные спецификации продукта:

    Размеры: диаметр 6 см (2,4 дюйма), высота 3 см (1,2 дюйма)
    Вес: 30 грамм
    Ожидаемый срок службы: 100 000 часов
    Потребление электроэнергии: 0 Втч / ч
    Выработка электроэнергии: Максимум 10 Втч / ч
    Плотность мощности: 1,8 Вт / см^3

    В описании продукта указано: “несколько устройств Minisklep можно легко комбинировать для достижения любой желаемой мощности”.

    Цена составляет 25 долларов. Обычный SKLep рассчитан на 100 Вт и стоит 249 долларов, поэтому цена за ватт в основном такая же. Возможно, это понравится тем, кто интересуется Ecat и хочет попробовать его, но не хочет платить более высокую цену за полноразмерный SKLep. При мощности 10 Вт он может быть полезен в качестве зарядного устройства для батарей или для управления небольшой электроникой, но тем, кто хочет использовать более крупные системы, не имеет особого смысла использовать этот меньший Ecat.

    источник: http://lenr.seplm.ru/novosti/leonardo-corp-teper-prinimaet-predvaritelnye-zakazy-na-ecat-minisklep
  6. Ser1

    Ser1 Чатланин

    Что - то не верится, говорили кролики...
    меграв кеше продавал компенсаторы реактивной мощности сети с закопченной медной проволокой в кач. источника СЕ по USD 300 (и упаковано в экологически чистый пакет!)
    Здесь предлагают (по ссылке из http://ecatorders.com/) кроме цены в USD 25, ещё 100'000 часов работы и 10ватт СЕ выхода, без указания вых. напряжения!!! есть ещё один нюанс:
    - платить пока не надо, только когда ваш заказ поступит в производство
    - а начнется оно (это самое производство) сразу, как только наберется заказов на 10миллионов устройств, так сразу и начнется
    - вы будете извещены о дате исполения вашего заказа, но оплатить его должны ДО отправки
    - в заказе указать ФИО, адрес, телефон, e-mail + согласие с условиями поставки
    Ну и так - для интереса: в бланке заказа нужно указать тип питающего напряжения (постоянное - переменное) и тип выходного напряжения (тоже пост./перем.) без конкретных значений
    До кучи: заказ размещается на сайте, ОТДЕЛЬНОМ от сайта компании Леонардо (изобретателя=? производителя=?) (http://www.leonardocorporation.com/), сам же сайт Леонардо временно размещен (припаркован) на бесплатном хостинге до покупки этого доменного имени любым заинтересованны лицом. Никакого наполения, кроме титульной страницы с указанием возможности приобрести дом. имя, там нет
    И ранее не от этого ли производителя была попытка продать под видом СЕ устройств китайские светодиодные светильники (сроки начала продаж давно вышли, что там с ними, Mouselab, - не высните=?)
    Последнее редактирование: 3 Сентябрь 2022
  7. Ser1

    Ser1 Чатланин

    Mouselab, по числу безсмысленных постов Вы рискуете отнять лавры у Ракарского... Оно, кочнечно, выглядит чуть более научно и оживляет, но окончательно превращает форум в балаган. Проверяйте публикуемую информацию!
    Последнее редактирование: 3 Сентябрь 2022
  8. kapchenegger

    kapchenegger Чатланин

    А предлагаемая батарейка случаем не радиоизотопный источник питания?
    Так называемая "атомная" или "ядерная" батарейка.
    Ещё в 50-х годах прошлого века такую изобрели и в космос запустили

Поделиться этой страницей